\(\int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\) [236]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 51 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a} \]

[Out]

arctanh((a+b)^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/(a+b)^(1/2)-coth(x)*(a+b*tanh(x)^2)^(1/2)/a

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3751, 491, 12, 385, 212} \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a} \]

[In]

Int[Coth[x]^2/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]]/Sqrt[a + b] - (Coth[x]*Sqrt[a + b*Tanh[x]^2])/a

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 491

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*e*(m + 1))), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {1}{x^2 \left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right ) \\ & = -\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a}+\frac {\text {Subst}\left (\int \frac {a}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right )}{a} \\ & = -\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a}+\text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right ) \\ & = -\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a}+\text {Subst}\left (\int \frac {1}{1-(a+b) x^2} \, dx,x,\frac {\tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right ) \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.85 (sec) , antiderivative size = 130, normalized size of antiderivative = 2.55 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=-\frac {\cosh ^2(x) \coth (x) \left (1+\frac {b \tanh ^2(x)}{a}\right ) \left (-\frac {4 (a+b) \operatorname {Hypergeometric2F1}\left (2,2,\frac {5}{2},-\frac {(a+b) \sinh ^2(x)}{a}\right ) \sinh ^2(x) \left (a+b \tanh ^2(x)\right )}{3 a^2}+\frac {\arcsin \left (\sqrt {-\frac {(a+b) \sinh ^2(x)}{a}}\right ) \left (a+2 b \tanh ^2(x)\right )}{a \sqrt {-\frac {(a+b) \cosh ^2(x) \sinh ^2(x) \left (a+b \tanh ^2(x)\right )}{a^2}}}\right )}{\sqrt {a+b \tanh ^2(x)}} \]

[In]

Integrate[Coth[x]^2/Sqrt[a + b*Tanh[x]^2],x]

[Out]

-((Cosh[x]^2*Coth[x]*(1 + (b*Tanh[x]^2)/a)*((-4*(a + b)*Hypergeometric2F1[2, 2, 5/2, -(((a + b)*Sinh[x]^2)/a)]
*Sinh[x]^2*(a + b*Tanh[x]^2))/(3*a^2) + (ArcSin[Sqrt[-(((a + b)*Sinh[x]^2)/a)]]*(a + 2*b*Tanh[x]^2))/(a*Sqrt[-
(((a + b)*Cosh[x]^2*Sinh[x]^2*(a + b*Tanh[x]^2))/a^2)])))/Sqrt[a + b*Tanh[x]^2])

Maple [F]

\[\int \frac {\coth \left (x \right )^{2}}{\sqrt {a +b \tanh \left (x \right )^{2}}}d x\]

[In]

int(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x)

[Out]

int(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 468 vs. \(2 (43) = 86\).

Time = 0.32 (sec) , antiderivative size = 1565, normalized size of antiderivative = 30.69 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\text {Too large to display} \]

[In]

integrate(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a)*sqrt(a + b)*log(-((a*b^2 + b^3)*cosh(x)^8 + 8*(a*b
^2 + b^3)*cosh(x)*sinh(x)^7 + (a*b^2 + b^3)*sinh(x)^8 - 2*(a*b^2 + 2*b^3)*cosh(x)^6 - 2*(a*b^2 + 2*b^3 - 14*(a
*b^2 + b^3)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a*b^2 + b^3)*cosh(x)^3 - 3*(a*b^2 + 2*b^3)*cosh(x))*sinh(x)^5 + (a^3
 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^4 + (70*(a*b^2 + b^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 - 30*(a*b^
2 + 2*b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a*b^2 + b^3)*cosh(x)^5 - 10*(a*b^2 + 2*b^3)*cosh(x)^3 + (a^3 - a^2*b
+ 4*a*b^2 + 6*b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 +
2*(14*(a*b^2 + b^3)*cosh(x)^6 - 15*(a*b^2 + 2*b^3)*cosh(x)^4 + a^3 - 3*a*b^2 - 2*b^3 + 3*(a^3 - a^2*b + 4*a*b^
2 + 6*b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cos
h(x)^4 + 3*(5*b^2*cosh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x)^3 - (a^2 - 2*a*b -
3*b^2)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^2*cosh(x)^2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 +
 2*(3*b^2*cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh
(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7
 - 3*(a*b^2 + 2*b^3)*cosh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^3 + (a^3 - 3*a*b^2 - 2*b^3)*cosh(x))*
sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sin
h(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + (a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a)*sqrt(a + b)
*log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*a*cosh(x)^2 + 2*(3*(a + b)*cosh(
x)^2 + a)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x
)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 + a*cosh(
x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*(a + b)*sqrt(((a + b)*cosh(x)^2
+ (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a
*b)*cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 - a^2 - a*b), -1/2*((a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)
^2 - a)*sqrt(-a - b)*arctan(sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 - a - b)*sqrt(-a - b)*sqr
t(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a*b + b^2)*co
sh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 + (a^2 - a*b - 2*b^2)*cosh(x)^2 + (6*(a*b +
b^2)*cosh(x)^2 + a^2 - a*b - 2*b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a*b + b^2)*cosh(x)^3 + (a^2 - a*b -
2*b^2)*cosh(x))*sinh(x))) + (a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a)*sqrt(-a - b)*arctan(sqrt(2)*
sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))
/((a + b)*cosh(x)^2 + 2*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 + a + b)) + 2*sqrt(2)*(a + b)*sqrt(((a + b
)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^2 + a*b)*cosh(x)^2
+ 2*(a^2 + a*b)*cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 - a^2 - a*b)]

Sympy [F]

\[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {\coth ^{2}{\left (x \right )}}{\sqrt {a + b \tanh ^{2}{\left (x \right )}}}\, dx \]

[In]

integrate(coth(x)**2/(a+b*tanh(x)**2)**(1/2),x)

[Out]

Integral(coth(x)**2/sqrt(a + b*tanh(x)**2), x)

Maxima [F]

\[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int { \frac {\coth \left (x\right )^{2}}{\sqrt {b \tanh \left (x\right )^{2} + a}} \,d x } \]

[In]

integrate(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(coth(x)^2/sqrt(b*tanh(x)^2 + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 343 vs. \(2 (43) = 86\).

Time = 0.48 (sec) , antiderivative size = 343, normalized size of antiderivative = 6.73 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=-\frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {4 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b}\right )}}{{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} - 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} - 3 \, a + b} \]

[In]

integrate(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b)
- sqrt(a + b)*(a - b)))/sqrt(a + b) - 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2
*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/sqrt(a + b) + 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b
*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b)))/sqrt(a + b) + 4*(sqrt(a + b)*e^(2*x) - sqrt(a*e^
(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))/((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) +
 b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 - 2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a
*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt(a + b) - 3*a + b)

Mupad [F(-1)]

Timed out. \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {{\mathrm {coth}\left (x\right )}^2}{\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}} \,d x \]

[In]

int(coth(x)^2/(a + b*tanh(x)^2)^(1/2),x)

[Out]

int(coth(x)^2/(a + b*tanh(x)^2)^(1/2), x)